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Spatial Characterization of Riparian Corridors in the Loire 

Basin: Integrating LiDAR, GIS, and Multi-Scale Indicators 

1. Abstract (EN) 

Riparian vegetation plays a key role in maintaining river ecosystem functions, especially in the context 

of increasing climatic and anthropogenic pressures. Monitoring remains spatially inconsistent and 

methodologically fragmented. This study, conducted as part of a broader research-action initiative 

within the SAGE Loire en Rhône-Alpes framework, aims to establish a replicable and geomatics-based 

approach to assess riparian vegetation across varied land uses and hydrological contexts. Using open-

access datasets this work implemented workflows for valley bottom delineation, LiDAR-derived 

vegetation mapping, longitudinal and lateral connectivity analyses, and vegetation quality classification 

via buffer-based and reach-based matrices. These layers were integrated into a GIS database 

supporting multi-scalar analysis of vegetation extent, continuity, and density. Results highlight the 

critical role of high-resolution LiDAR data in detecting narrow or fragmented riparian corridors and 

underscore the spatial variability of vegetation quality across the watershed. Despite methodological 

constraints such as segmentation limitations and resolution mismatches, the workflow provides a 

scalable framework to support conservation planning and restoration prioritization. This research 

contributes directly to the development of operational tools for water managers and ecological 

stakeholders seeking to adaptively manage riparian systems under changing environmental 

conditions. 

2. Résumé (FR) 

La végétation rivulaire, ou ripisylve, joue un rôle essentiel dans le maintien des fonctions écologiques 

des écosystèmes fluviaux, en particulier dans un contexte de pressions climatiques et anthropiques 

croissantes. Son suivi reste spatialement hétérogène et méthodologiquement fragmenté. Cette étude, 

menée dans le cadre d’une initiative plus large de recherche-action portée par le SAGE Loire en 

Rhône-Alpes, vise à établir une méthode reproductible basée sur les outils de la géomatique pour 

évaluer la végétation rivulaire dans des contextes variés d’occupation du sol et de dynamique 

hydrologique. À partir de jeux de données en accès libre, cette approche a mis en œuvre plusieurs 

chaînes de traitement : délimitation des fonds de vallée, cartographie de la végétation à partir du 

LiDAR, analyses de connectivité longitudinale et latérale, ainsi que classification de la qualité de la 

végétation via des matrices fondées sur des zones tampons et des tronçons de cours d’eau. Ces 

couches ont été intégrées dans une base de données SIG permettant une analyse multi-échelle de 

l’étendue, de la continuité et de la densité de la végétation. Les résultats soulignent l’importance 

cruciale des données LiDAR haute résolution pour la détection des corridors rivulaires étroits ou 

fragmentés, et mettent en évidence la variabilité spatiale de la qualité de la végétation à l’échelle du 

bassin. Malgré certaines limites méthodologiques, telles que les difficultés de segmentation et les 

écarts de résolution, la chaîne de traitement proposée offre un cadre évolutif permettant d’appuyer la 

planification de la conservation et la hiérarchisation des actions de restauration. Ce travail contribue 

directement au développement d’outils opérationnels à destination des gestionnaires de l’eau et des 

acteurs écologiques souhaitant adapter la gestion des systèmes rivulaires face aux changements 

environnementaux. 

Keywords: Connectivity analysis, Geographic Information Systems (GIS), LiDAR, Riparian 

vegetation, Restoration and conservation planning, Valley bottom delineation, Vegetation density  
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5. Introduction 

5.1.   Riparian vegetation 

Riparian vegetation refers to the plant communities that occur along watercourses—streams, 

rivers, and wetlands—occupying the transitional zone between terrestrial and aquatic 

environments known as ecotones. These communities are shaped by the duration and variability 

of water presence and are composed of hydrophilic and hydromorphic species adapted to wet or 

flood-prone conditions. Typically, willows (Salix spp.), alders (Alnus spp.), and ashes (Fraxinus 

spp.) occupy stream banks, while slightly elevated zones support maples and elms, and upper 

slopes may feature pedunculate oaks (Quercus robur) and hornbeams (Carpinus betulus) 

(Glossaire eau et biodiversité, 2018; Mc Donald et al., 2018). 

Those riparian zones play a foundational role in the functioning of riverine systems, being at the 

interface of land and water (Figure 1). It stabilizes banks through root reinforcement, reduces soil 

erosion, filters sediments and nutrients from runoff, and improves water quality by intercepting 

pollutants before they reach aquatic environments (Macfarlane et al., 2017; Michez et al., 2017). 

These areas also regulate stream temperatures through shading, contributing to the thermal 

balance of aquatic ecosystems—an essential function in the context of rising temperatures driven 

by climate change (Godfroy et al., 2022; Seavy et al., 2009). Riparian zones also support 

ecological connectivity by serving as habitat corridors for wildlife and connecting biodiversity 

across terrestrial and aquatic domains (Capon et al., 2013; Riis et al., 2020). Literature tends to 

estimate the optimal with of the riparian buffer to around 30 meters (Sweeney & Newbold, 2014). 

Figure 1: Ecosystem services of riparian vegetation, with the relation to its water table, modified 
from McDonald et al., 2018 
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Beyond their ecological roles, riparian ecosystems are also vital for hydrological regulation, 

nutrient cycling, and soil fertility. They promote organic matter exchange across the aquatic–

terrestrial boundary, supporting productive aquatic food webs (Michez et al., 2017). These 

services, however, are increasingly under threat. Urbanization, agricultural intensification, 

hydrological fragmentation, and climate-driven stressors all contribute to riparian degradation 

(Baattrup‐Pedersen et al., 2018; Camporeale et al., 2013). 

Climate change exacerbates these pressures by intensifying extreme weather patterns, altering 

precipitation regimes, and increasing temperature variability. The resulting impacts — such as 

lower summer flows, higher flood peaks, and increased evapotranspiration — lead to water stress 

and ecological shifts. Drought-tolerant species may outcompete native flora, while higher water 

temperatures threaten aquatic organisms relying on shaded habitats (Capon et al., 2013; Dufour 

et al., 2019). These disruptions also make riparian zones more vulnerable to invasive species and 

compound the challenges of ecological restoration (Godfroy et al., 2022). 

Recognizing these threats, European and national frameworks — such as the Water Framework 

Directive (European Parliament, 2000), the French SDAGE plans, and the Nature Restoration 

Regulation (European Union, 2024) — now mandate riparian conservation as a strategic 

objective. The latest policy aims to restore at least 30% of degraded habitats by 2030, 

emphasizing the need for spatial tools to identify and prioritize riparian restoration at scale. 

 

5.2. Geomatics in riparian vegetation monitoring 

Geomatics applications, primarily Geographic Information Systems (GIS), remote sensing, 

and ALS (Airborne Laser Scanning), such as LiDAR (Laser Infrared Detection And Ranging), have 

become predominant tools for the study and management of the environment, including riparian 

vegetation (Godfroy et al., 2022). These approaches enable spatial delineation and modeling of 

vegetation structures and their interactions with geomorphological and hydrological features. GIS 

allows for integration of multi-source spatial data to identify vegetation patterns relative to terrain, 

land use, and water proximity (Sciuto et al., 2022). 

Remote sensing platforms, such as high-resolution orthophotos, provide temporal series useful 

for monitoring vegetation change, especially when integrated with multispectral or hyperspectral 

imagery. These tools are particularly valuable for identifying phenological cycles, vegetation 

stress, and long-term degradation patterns in riparian zones (Godfroy et al., 2022; Lochin et al., 

2025; Pace et al., 2022). On the other hand, airborne LiDAR captures fine-scale three-dimensional 

vegetation structures, including canopy height, density, and stratification, even in narrow or 

densely vegetated corridors (Michez et al., 2017; Roussel et al., 2020; Stackhouse et al., 2023). 

Advancements in machine learning, such as object-based image analysis and random forest 

classification, now enhance the accuracy of riparian vegetation delineation in complex 

landscapes. These methods can offer robust classification over large extents, outperforming 

traditional pixel-based approaches in mixed or fragmented environments (Segura-Méndez et al., 

2023). 
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Moreover, open source available tools are spreading within environment domains, enabling more 

robust analysis of terrain, structures and composition of riparian zones (Gilbert et al., 2016; 

Grijseels et al., 2021; Macfarlane et al., 2017; Roux et al., 2015). 

 

5.3. Knowledge gaps 

A major constraint in current mapping efforts is the spatial resolution of widely used remote 

sensing datasets. Standard 30-meter imagery (e.g., Landsat) fails to capture narrow riparian 

strips, especially in anthropogenically modified landscapes, where vegetation fragments are often 

smaller than a pixel or intermixed with agricultural or urban features (Macfarlane et al., 2017). 

Even with higher-resolution imagery like Sentinel-2 or Pleiades, underestimation of vegetative 

cover may occur in areas with steep topography or complex canopy shadowing (Lejot et al., 2011). 

Riparian zones are highly dynamic, subject to hydrological fluctuations, varied sediment 

deposition or erosions, and fast vegetation succession (Metz et al., 2016). Yet many mapping 

efforts rely on single-date observations, limiting the detection of degradation trends or regrowth 

following disturbance (Breton et al., 2023). While NDVI and LiDAR-derived vegetation metrics can 

reflect canopy changes, they are rarely updated at temporal scales sufficient to capture intra-

annual, even inter-annual variation (Godfroy et al., 2022). 

The lack of methodological consistency across riparian mapping studies presents another 

challenge. Differences in buffer widths, classification thresholds, and delineation tools lead to 

heterogeneous outputs that are not easily comparable across spatial or administrative scales 

(Dufour et al., 2019; Segura-Méndez et al., 2023). Even within the same watershed, variation in 

LiDAR processing or object classification can yield different results for extent, structure, or 

connectivity of riparian vegetation (Macfarlane et al., 2017). 

The limited integration of stakeholder input in the development of geomatics-based monitoring 

tools is also critical for research. Many outputs are technically robust but lack relevance or 

accessibility for river managers or conservation planners. This undermines their application in 

practical settings (Breton et al., 2023). Approaches based on data co-production—where 

stakeholders contribute to indicator selection, tool development, and ground validation—remain 

underutilized, despite being shown to improve adoption and utility (Reed et al., 2014). 

The integration of hydrological, geomorphological, and ecological data remains limited. Holistic 

understanding of riparian functionality—particularly under climate change—requires 

interdisciplinary approaches that combine hydroclimatic models, functional ecology, and land use 

planning (Dufour et al., 2019; Godfroy et al., 2022). The fragmentation of datasets and analytical 

workflows continues to hinder the development of scalable, transferable tools. 

 

5.4. Benefits of research action 

Integrating scientific research with practical land and water management—commonly termed 

research-action—produces a wide array of benefits for both researchers and practitioners. One of 

the most impactful outcomes is the co-production of data, which enhances the accuracy, 
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applicability, and long-term utility of environmental information, particularly in complex, spatially 

heterogeneous ecosystems like riparian zones. 

Data co-produced in collaboration with stakeholders is more likely to reflect local realities, making 

it directly usable for decision-making and planning. In riparian management, this ensures that 

spatial indicators (e.g., vegetation extent, continuity) are developed in ways that are both 

ecologically meaningful and operationally feasible (Reed et al., 2014). Such relevance fosters 

stronger alignment between monitoring outputs and management needs. 

Field validation by local stakeholders improves the spatial and thematic accuracy of geospatial 

data (Danielsen et al., 2014). Involving practitioners in data acquisition (e.g., GPS marking of 

features, remote sensing interpretation) allows the correction of misclassifications and enhances 

the interpretability of geospatial outputs. This collaborative model also leverages tacit ecological 

knowledge held by local actors. 

Engaging stakeholders in the data collection process builds technical capacity and fosters shared 

ownership of the data infrastructure. This empowerment enables long-term sustainability of 

monitoring programs, especially in decentralized governance contexts such as SAGE (Fazey et 

al., 2014). It also allows local institutions to carry forward data analysis and integration beyond the 

life of a single research project. 

When stakeholders are involved in research design and data collection, the resulting outputs are 

more readily understood and trusted, leading to faster and more effective application in the field 

(Cvitanovic et al., 2016). This helps close the gap between scientific research and real-world 

management—especially important in dynamic environments like riparian zones, where ecological 

processes and human pressures intersect. 

Well-structured, co-produced datasets create the baseline for evidence-based adaptive 

management. In riparian systems, this means being able to spatially prioritize restoration zones, 

track vegetation recovery, and assess the effectiveness of buffer widths and ecological 

connectivity (Capon et al., 2013; Seavy et al., 2009). By integrating ecological monitoring with 

policy tools (e.g., SDAGE, Nature Restoration Regulation), data production supports iterative 

learning cycles and more resilient ecosystem governance. 

5.5. Context 

This study forms part of a broader cluster of interdisciplinary internships coordinated under the 

SAGE Loire en Rhône-Alpes initiative. This collective project aims to develop consistent and 

scalable methods for characterizing and monitoring riparian vegetation in the study area. The Loire 

department's riparian zones are currently assessed using fragmented and inconsistent indicators, 

often applied only to subsets of the territory. This fragmented data landscape—comprised of 

disparate land-use maps, vegetation inventories, and localized hydrological indices—limits the 

capacity for cohesive management or cross-regional comparison. Existing tools like the IBC-R 

index or the emerging Ripascan protocol remain inconsistently deployed, further complicating 

efforts to synthesize ecological status assessments across the catchment. 

In response, this internship contributes to the design and implementation of a spatially explicit 

methodology for mapping riparian zones across the entire study area. It emphasizes a harmonized 

and replicable approach that can integrate ecological, geomorphological, and land-use variables. 
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Within the internship cluster, complementary efforts address related challenges—ranging from 

evaluating forest ecological function and biodiversity to modeling riparian impacts on water 

temperature and flow dynamics. Together, these parallel studies support the development or the 

validation of robust and multi-scalar indicators.  

5.6. Data Availability 

The spatial analysis conducted in this study relied on a variety of openly accessible and high-

resolution geospatial datasets provided by national and institutional sources. The foundational 

topographic and hydrographic layers, including stream networks and land cover features, were 

sourced from the BD TOPO and OCSGE databases published by the French National Institute of 

Geographic and Forest Information (IGN). High-resolution LiDAR data (classified point clouds at 

1 m resolution) were also made publicly available by IGN as part of the LiDAR HD campaign and 

proved critical for detailed vegetation structure extraction. Aerial orthophotos were obtained from 

BD ORTHO, supporting both vegetation validation and land use classification. The availability of 

such high-quality national datasets significantly enhances the reproducibility, scalability, and 

operational utility of geomatics-based riparian studies in France. 

5.7. Problem Statement 

How can riparian vegetation extent, continuity, and structural attributes be effectively characterized 

across large watersheds using integrated geomatics approaches—particularly GIS and airborne 

LiDAR—to support ecological restoration and conservation under climate change and 

anthropogenic pressures? 

5.7.1. Objectives 

• Develop a robust, replicable method for mapping riparian vegetation across the Loire en 

Rhône-Alpes watershed. 

• Generate spatial indicators of riparian structure, extent, and connectivity to inform 

ecological status assessment. 

• Create reference layers to support practitioners, researchers, and decision-makers in 

restoration planning and monitoring. 

5.7.2. Hypotheses 

• Combining high-resolution LiDAR and GIS analysis provides more accurate and actionable 

riparian vegetation mapping than conventional vector data alone. 

• Riparian vegetation structure and connectivity are strongly correlated with valley bottom 

morphology and proximity to hydrological networks. 

• Integrating geomatics-based indicators can highlight spatial priorities for restoration by 

identifying fragmented or degraded riparian zones across the SAGE. 
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6. Study Area 

The SAGE Loire en Rhône-Alpes study area is situated within France’s Massif Central, 

characterized by a complex assemblage of crystalline and metamorphic rocks, including granites, 

gneiss, and schists originating from the Paleozoic era (Quenardel et al., 1991) (Figure 2). These 

formations give rise to several prominent mountain ranges: the Monts du Forez, Bois Noirs, and 

Monts de la Madeleine to the west, and the Monts du Lyonnais and Monts du Beaujolais to the 

east. To the southeast lies the granitic Pilat Massif, noted for its geological diversity and varied 

landscapes (Faure et al., 2005). 

The region is also comprised of sedimentary basins such as the Forez and Roannais plains, 

primarily composed of Tertiary and Quaternary sediments (Vitel, 2001). These plains are 

separated by the historically significant Stéphanoise depression, a coal basin that played a pivotal 

role in the area's industrial development (Boudrie, 2004). 

Topographically, the study area exhibits marked contrasts spanning around 4000 km2 (SAGE LRA, 

2014). The western mountain ranges, Monts du Forez, feature rugged terrain, steep slopes, deep 

valleys, and high peaks, reaching an elevation of 1,634 meters, making it the highest point in this 

Figure 2: Land cover and geology of the SAGE Loire en Rhone Alpes. Sources: CORINE LAND COVER, BRGM 
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range(SAGE LRA, 2014). These uplands are often cloaked in dense forests, peatlands and display 

sharp altitudinal gradients going downstream. In contrast, the Forez and Roannais plains present 

relatively flat landscapes, generally ranging between 300 and 500 meters in elevation, facilitating 

extensive agricultural activities and significant urban development. The eastern and southeastern 

areas, including the Monts du Lyonnais, Monts du Beaujolais, and Pilat Massif, offer more 

moderate altitudes, typically below 1,000 meters, characterized by rolling plateaus, gentle slopes, 

and narrow valleys, contributing to distinct local microclimates (Faure et al., 2005; SAGE LRA, 

2014). 

Climatically, the SAGE Loire en Rhône-Alpes region experiences a temperate regime with 

pronounced seasonal variations. Winters and autumns typically bring higher water levels and 

significant precipitation, whereas summers are notably drier, imposing considerable hydrological 

stress on local aquatic ecosystems. Climate projections indicate significant changes, with 

temperature increases between +3°C to +6°C anticipated by the end of the century. Winter 

precipitation is expected to rise by approximately 20%, while summer rainfall may decrease by up 

to 30%, leading to prolonged drought conditions and a heightened frequency of intense rainfall 

events (EPTB Loire, n.d.) 

Land use in this region predominantly revolves around agriculture, occupying about 50% of the 

total territory (SAGE LRA, 2014). Agricultural land is largely dedicated to livestock farming, 

especially dairy production and forage cultivation. Intensive cereal production is also significant, 

particularly within the Forez Plain (SAGE LRA, 2014). 

The territory comprises approximately 290 communes and hosts two major urban centers: Saint-

Étienne, totaling 677538 with around 175,318 inhabitants, and Roanne, with approximately 35,750 

inhabitants in 2007 (SAGE LRA, 2014). Historically, this region has been an industrial hub, 

particularly along the Ondaine/Saint-Étienne/Gier corridor. Dominant industrial sectors include 

metalworking, textiles, plastics, and wood industries. 

Hydrologically, the Loire River serves as the primary watercourse of the region, alternating 

between deep, narrow gorges and extensive sedimentary plains. Key hydraulic infrastructures 

include the Grangent and Villerest dams, instrumental in regional water management strategies, 

flood control, and drought mitigation (EPTB Loire, n.d.; Galtier & Guillerme, 2004). Several small 

and bigger canals crosses waterways along the whole sage extent, those being dedicated mostly 

to irrigation during dryer months. 

7. Material and methods 

This will present the methods used during this internship. Please note that during almost the 

whole length of the internship, a part of the north west corner of the study area was missing 

LiDAR data, which became available during the writing of this report, so the DEM was created 

from this data, but none of the metrics were re-calculated. Please note as well that generative 

AI was used in order to fine-tune the R and python scripts.  

7.1. Valley bottom 

The delineation of valley bottoms represents a foundational step in riparian vegetation 

analysis, as it spatially defines the domain within which riparian processes, structures, and 
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vegetation communities are most likely to develop. Valley bottoms are the product of long-term 

fluvial and geomorphological processes and are commonly defined as the low-lying areas 

adjacent to streams and rivers that are subject to frequent hydrological influence, sediment 

deposition, and lateral channel movement (Piégay et al., 2005; Stella et al., 2013). In ecological 

terms, these areas host some of the most dynamic and biologically diverse habitats due to their 

periodic connectivity with the watercourse and the presence of fertile alluvial soils (Capon et al., 

2013; Naiman et al., 1993). 

The purpose of delineating valley bottoms in this study was to constrain the spatial analysis of 

riparian vegetation to hydro-geomorphologically relevant zones. This is particularly important in 

the study area, where a strong topographic gradient results in narrow, steep-sided valleys in 

upland areas and wider, low-slope alluvial plains downstream. Without an objective valley bottom 

Figure 3:Valley bottom 
delineation process 
workflow 
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boundary, riparian vegetation might be falsely interpreted outside of its functional zone, thus 

biasing ecological and structural assessments. 

For this study, high-resolution digital elevation data derived from LiDAR HD (5-meter resolution) 

(R script in Appendix 5), made available by the IGN, was used as the base dataset. Initially, the 

RGE ALTI DEM was used but due to many incoherences (Appendix 1), primarily caused by the 

aggregation of data (Appendix 2). The resultant DEM of difference (Appendix 3) between the RGE 

ALTI DEM and LiDAR HD DEM prove major differences that can have an impact on the valley 

bottom result. 

Prior to analysis, the stream network was cleaned of all the canals (small and large) due to output 

incoherences. Canals creates large polygons output, because of the intersecting of lines in two 

different points, making the algorithm “think” that it is one really large river (in the first tests, the 

polygons were covering half of the sage area. 

The digital elevation model was hydrologically corrected using tools available in the GRASS GIS 

software suite using the “r.carve” modules. This tool ensure topographic continuity in the drainage 

network by removing artificial barriers such as roads or bridges that may otherwise disrupt the 

modeled flow path (Soille et al., 2003). The “r.carve” function was particularly useful for maintaining 

hydrological realism along valley floors in urban or infrastructure-dense areas. The carve width 

used was two time the resolution (here 10 meters). 

Two valley bottom delineation tools were initially compared: the Fluvial Corridor Toolbox (FCT) 

and the Valley Bottom Extraction Tool (VBET) (Figure 3). The FCT, a QGIS plugin developed to 

simplify geomorphic corridor mapping, operates by applying a uniform vertical buffer above the 

channel elevation to define the lateral extent of the valley floor (Clubb et al., 2017). Although 

straightforward to implement, this approach has several drawbacks, including a reliance on user-

defined Z thresholds and limited responsiveness to changes in valley morphology or hydrological 

conditions. 

The VBET, developed by the Utah State Univeristy, was ultimately selected due to its multi-criteria, 

spatially adaptive, and fully automated approach (Figure 4). VBET uses a combination of DEM-

derived slope metrics, flow accumulation surfaces, bankfull channel height estimates, and 

confinement thresholds to delineate valley bottoms across large river networks. It begins by 

Figure 4: Input and output parameters of the valley bottom extraction tool on a cross section of a theorical river 
ant associated floodplain. 
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detrending the DEM relative to the longitudinal profile of the stream, which allows the tool to 

evaluate topographic relationships perpendicular to the flow direction. Flow accumulation 

thresholds are then applied to identify major and minor drainage features. Slope breaks and 

changes in channel confinement are used to define the lateral boundaries of the valley bottom. 

Empirically or literature-derived estimates of bankfull width and height help refine the corridor 

boundary, making the output context-sensitive to stream size and valley geometry (Gilbert et al., 

2016). 

The output of VBET is a continuous polygon layer representing the valley bottom along the 

streams of the study area. This layer was subsequently used as a mask for all vegetation 

extraction and continuity assessments, ensuring that only those vegetation features with a likely 

hydrological connection to the fluvial system were retained. The accuracy of the delineated valley 

bottoms were cross-validated using Q100 flood extents from regional hydrological modeling data, 

as well as a web-map available for practitioners.  

7.2. Vegetation delineation 

Accurate delineation of riparian vegetation is essential for assessing the structure, extent, and 

continuity of riparian corridors. These vegetative zones play critical ecological roles in water quality 

regulation, habitat provision, bank stabilization, and microclimate moderation (Naiman et al., 1993; 

Riis et al., 2020). However, due to their narrowness, spatial heterogeneity, and dependence on 

fine-scale topographic and hydrological gradients, riparian zones are difficult to map precisely 

using conventional cartographic datasets or medium-resolution remote sensing imagery 

(Macfarlane et al., 2017; Michez et al., 2017). 

Initial attempts to characterize vegetation relied on the French national land cover dataset “Zone 

de Végétation” provided by the IGN. While informative at larger scales (1:25,000), this vector 

dataset lacks precision to look at a narrow corridor around a river, and uses a minimum mapping 

unit of 5,000 m² and represents smaller features as generalized hedgerows or mixed-use patches. 

This granularity proved insufficient for delineating riparian bands or isolated trees common along 

headwaters and cultivated valleys. Although a major update occurred in 2015, parts of the dataset 

still reflect field data from 2009, resulting in temporal mismatch with the current state of vegetation. 

These limitations were evident during field comparisons, where significant discrepancies were 

observed between mapped polygons and actual vegetated zones—especially along small 

watercourses and recently reforested riparian segments. 
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To overcome these challenges, this study adopted a LiDAR-based vegetation extraction method 

using the national LiDAR HD dataset released by IGN in 2022. The approach focuses on 

extracting vegetation structure directly from the classified point cloud, rather than relying on 

multispectral indices or historical vector layers. Specifically, vegetation was delineated by isolating 

all LiDAR points classified as “high vegetation” (class 5)—corresponding to vertical structures such 

as shrubs and trees—within a vertical threshold of at least 2 meters above ground. 

These points were then vectorized using a density-based clustering algorithm, generating a new 

polygon layer representing continuous patches of high vegetation. This delineation allows for a 

sub-meter precision in identifying riparian forests, accounting for both dense forest blocks and 

fragmented vegetated areas. Moreover, the use of classified LiDAR returns improves resilience 

against errors introduced by shadowing or canopy cover, common issues in optical remote sensing 

(Michez et al., 2017; Stackhouse et al., 2023). 

The method was implemented using a tool in QGIS, the point cloud boundary tool. The outputs 

were validated visually against high-resolution aerial orthophotos (BD Ortho IGN, 2022) and via 

field verification along segments of the Lignon and Anzon rivers, with the help of QField maps. 

One of the major outcomes of this LiDAR-based approach was the clear demonstration of its 

superiority over IGN vector vegetation data, particularly in confined valleys or recently afforested 

banks. As shown in the comparative analysis (Figure 5), large mismatches occurred where small 

riparian forests were not represented in the IGN dataset but were clearly identified in the LiDAR 

data. These mismatches were particularly prominent in agricultural areas and around 

infrastructure, where thin riparian bands are most likely to be excluded in coarse-resolution 

products. 

Figure 5: Differences between the IGN vector layer and the extracted vegetation layer from the classified LiDAR, with 
visual comparison 
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7.3. Longitudinal continuity 

The methodological approach was designed as a rapid diagnostic tool to support the selection 

of relevant sampling and validation sites for subsequent detailed analyses. It involved identifying 

the presence or absence of high vegetation cover adjacent to streamlines and hydrographic 

polygons using airborne LiDAR and cartographic data. 

First, a geometry representing the two banks of the fluvial corridor was constructed. Two data 

sources were used: the OCSGE polygon layer, specifically the "water surfaces" class, and the BD 

TOPO line layer representing hydrographic stream networks. From the BD TOPO stream lines, 

two lateral buffer lines were generated on each side of the stream using a fixed offset. These 

buffers approximate potential riparian corridors on both banks, especially where polygonal water 

representations were absent or fragmented. 

The resulting geometries (OCSGE water surfaces and lateral buffers from BD TOPO) were 

merged to form a continuous candidate layer for riparian presence assessment. This unified layer 

was then spatially intersected with the LiDAR-derived high vegetation layer, which had previously 

been extracted using classified point clouds (vegetation class 5) and vectorized into polygonal 

features. Each segment of the fluvial corridor was then classified based on whether it intersected 

this vegetation layer, distinguishing vegetated from non-vegetated streambanks. 

To reduce noise and account for minor classification gaps due to LiDAR occlusions or processing 

artifacts, a refinement was applied. Any non-vegetated line segments smaller than 10 meters in 

length, and entirely surrounded by vegetated segments, were reclassified as vegetated. This post-

processing step aimed to better reflect field-observable continuity and mitigate artificial breaks in 

continuity caused by data resolution or vegetation segmentation errors. 

Ultimately, the analysis yielded a binary longitudinal continuity classification (vegetated vs. non-

vegetated) along the linear hydrographic network. While preliminary in nature, this method 

provided essential spatial information for identifying zones with strong or weak vegetation 

continuity, facilitating field validation and helping define areas for more detailed buffer-based 

riparian assessments. 

7.4. Vegetation Density 

Vegetation density, particularly in riparian zones, serves as a critical indicator of ecosystem 

health, structural complexity, and potential ecological functionality (Naiman et al., 1993; Riis et al., 

2020). The estimation vegetation density was essential to differentiate riparian areas by their 

degree of coverage and canopy complexity, which are closely linked to their role in filtering 

nutrients, stabilizing banks, and offering habitat continuity. 

This metric was computed using the lidR package in R (Roussel et al., 2020), which allows the 

fast computing of large datasets. A variable window function, defined as 0.003 × point height + 4 

meters, was used to account for the variation in tree size and canopy width, improving crown 

delineation accuracy in heterogeneously structured forests. This dynamic approach was adapted 

from boreal forest studies but was applied here cautiously, acknowledging the structural 

differences in temperate deciduous riparian systems. 
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Figure 6: Formula calibration for the algorithm. Numbers on top of the boxplot are the number of trees detected. 

Validation of the vegetation density outputs was performed through two methods. First, visual 

verification was conducted using field data collected around vegetated places in Saint-Étienne, 

comparing the LiDAR-extracted vegetation patches to actual tree positions identified on site 

(Appendix 4a and 4b). Second, a cross-comparison with high-resolution aerial imagery (BD 

ORTHO, IGN) was made to ensure general consistency between high vegetation zones and 

optical signatures of canopy cover. While the approach yielded robust density patterns in forested 

headwaters and broad alluvial valleys, it underperformed in narrow riparian strips and urban-

adjacent areas, where LiDAR point occlusion and lower return densities introduced spatial noise. 

Then field validation were made on one of the ecology internship study sites, where approximately 

25x25 meters quadrats were defined and trees were counted inside. The three quadrats 

represents three different types of species repartition, according to management efforts made on 

this river:  number one untouched, mixed species (Alnus glutinosa, Fraxinus excelsior, Salix alba, 

Robinia pseudoacacia), number two, fully restored (Alnus glutinosa, Fraxinus excelsior, Salix alba, 

Populus nigra), and the third one, only invasive species (Robinia pseudoacacia). 

However, the method lies in its inability to fully capture understory vegetation and low shrub cover, 

which are often essential components of riparian structure but are masked under dense canopies 

or filtered out by classification thresholds. Additionally, segmentation of individual tree crowns—

necessary for estimating biomass or functional metrics—was not reliably achieved using the tree 

detection function in lidR, due to its original design for coniferous canopies in North America 

(Roussel et al., 2020). While alternatives such as the lidRtrees plugin developed by INRAE offer 
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improved segmentation using CHM-based analysis, these methods are computationally intensive 

and require careful pre-processing of digital terrain and canopy models (Monnet, 2010; Pitkänen 

et al., 2001; Popescu & Wynne, 2004). 

The final point vector file provides also the elevation above sea level of the tree top, on which can 

be subtracted the DEM elevation to obtain a tree height for each detected tree. 

7.5. Lateral Continuity 

Lateral continuity refers to the presence and structural coherence of riparian vegetation across 

multiple distances perpendicular to the stream channel. This aspect of riparian connectivity is 

essential for buffering hydrological and ecological interactions between aquatic and terrestrial 

systems, including flood attenuation, sediment trapping, nutrient retention, and wildlife habitat 

provision (Naiman et al., 1993; Riis et al., 2020). In fragmented landscapes or areas under 

anthropogenic pressure, the lateral spread of vegetation is often constrained by agriculture, urban 

development, or infrastructure, leading to weakened riparian functionality (Capon et al., 2013; 

Dufour et al., 2019). 

In this study, lateral continuity was assessed using a multi-buffer zonation approach applied to all 

stream reaches in the SAGE Loire en Rhône-Alpes area. Three concentric buffer zones were 

generated on both sides of each stream: the first at 10 meters, the second at 15 meters, and the 

third at 30 meters from the stream centerline. These distances were selected based on both 

ecological rationale and compatibility with established indices such as the French IBC-R (Janssen 

et al., 2021) and the Ripascan method (Staentzel, 2025), which recommend minimum buffer 

widths of respectively 10 and 15 meters for riparian quality assessment. The 0-10 and 10-15 meter 

buffers captures the immediate riparian strip, often considered the ecologically most sensitive 

zone, while the 15-30 meter extent provides an overview of broader landscape interactions. 

Each buffer zone was analyzed for key land cover variables: the proportion of high vegetation 

(extracted from classified LiDAR data), the percentage of impervious or artificialized surface (from 

the OCSGE database), and the presence of agricultural land. Using spatial overlay analysis in 

Figure 7: Creation of 500m long riparian buffers along streams. 
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ArcGIS Pro and QGIS, these variables were intersected with the buffer polygons and their relative 

proportions calculated for each 500-meter reach segment. 

7.6. Evaluation Matrix 

The evaluation matrix method is a key component of this study’s approach to classifying riparian 

forest quality along the river network of the study area. Designed to translate high-resolution 

spatial data into actionable ecological insights, this methodology synthesizes the condition of 

riparian vegetation at the standardized 500-meter stream reach scale. It does so by aggregating 

qualitative assessments derived from multi-distance buffer zones into a composite score that 

reflects the potential ecological functionality and structural integrity of riparian zones. 

The initial phase of the method relies on the previously created buffer zones. These zones reflect 

varying degrees of influence from the watercourse, with the innermost buffer capturing immediate 

riparian vegetation and the outermost representing transition areas influenced by surrounding land 

use. Each buffer is spatially tagged with an identifier (ID_BUFF) representing its proximity rank 

(from 1 to 3) and is analyzed for three key attributes: proportion of high vegetation, impervious 

surface cover (derived from OCSGE), and the vegetation density metric derived from LiDAR data. 

Each buffer’s condition is translated into a qualitative score—ranging from “Very Good” to “Bad”—

based on thresholds established through a combination of literature benchmarks and field 

observation. These qualitative classes are then assigned numerical values from 5 (Very Good) to 

1 (Bad), while zones dominated by urban cover or non-riparian features are excluded from the 

scoring process. This translation provides a standardized and quantitative means of aggregating 

ecological information across multiple scales of analysis (Breton et al., 2023). The reasoning was 

based on the Spanish QBR index (Segura-Méndez et al., 2023), even though all the data were 

not the same, it provided a track to follow. 

The second phase involves consolidating buffer scores into a single evaluation for each river 

reach. This is accomplished through a weighted averaging system, where each buffer’s 

contribution is adjusted based on its importance. Inner buffers are weighted more heavily than 

outer ones, reflecting their stronger ecological significance and direct connection to aquatic 

habitats. The formula applied is a classical weighted average: 

Weighted Score = (Σ Score × Weight) / (Σ Weight) 

Only buffers with valid scores are considered in the computation, and any missing or invalid data 

(e.g., due to urban masking or classification error) are excluded from the calculation to maintain 

consistency and data integrity. 

Once the weighted average score is calculated for each 500-meter segment, it is reclassified into 

a final qualitative class. The classification scheme follows clearly defined thresholds: a score ≥ 4.5 

is classified as “Very Good,” 3.5 to < 4.5 as “Good,” 2.5 to < 3.5 as “Moderate,” 1.5 to < 2.5 as 

“Poor,” and < 1.5 as “Bad.” This final classification is appended to the line dataset representing 

the river network, thus enabling visualization, spatial analysis, and prioritization of restoration or 

conservation actions at a management-relevant scale. 
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To operate this process, a custom Python-based script tool was developed within ArcGIS Pro. This 

tool automates the workflow, from buffer-score extraction to reach-level aggregation and 

classification. It ensures that the process is replicable, scalable, and resilient to variations in 

dataset completeness or quality. This tool supports iterative use, allowing updates to be made as 

new LiDAR acquisitions or land cover datasets become available, enhancing the long-term utility 

of the method in dynamic landscapes. 
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8. Results 

8.1. Valley Bottom Delineation 

This result illustrates the delineation of the valley bottom using the Valley Bottom Extraction Tool 

(VBET) applied to a pre-processed digital elevation model (DEM). The carved DEM ensured 

uninterrupted hydrological flow by eliminating artificial barriers such as roads or infrastructure. The 

output highlights low-lying alluvial zones that could potentially host riparian vegetation, with a 

spatial extent that reflects topographic confinement. This layer served as a fundamental spatial 

boundary for further vegetation analysis, delimiting the ecological potential of riparian corridors 

across the watershed. 

Figure 8: Result of the valley 
bottom delineation, with a 
zoom on Boen sur Lignon, and 
compared with the Q100 flood 
prediction from Loire Forez 
Agglomération, in charge of 
this watershed. 
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8.2. Vegetation Delineation 

High vegetation was extracted from classified LiDAR data using class 5 points, corresponding to 

tall woody vegetation. The result provides a detailed spatial footprint of tree cover, extending 

beyond standard forest polygons available in existing datasets. This fine-resolution delineation 

enabled detection of small or fragmented riparian woodlands, offering an accurate vegetation 

mask for later overlay analyses. It highlighted discrepancies with IGN forest layers and 

demonstrated the method’s ability to detect isolated trees or narrow strips of riparian cover 

otherwise omitted in vector-based sources. 

Figure 9: Result of the forest 
delineation from LiDAR, with a zoom 
on Boen sur Lignon. 
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8.3. Longitudinal Continuity 

This result shows the presence or absence of high vegetation along the stream network, visualized 

through segmented lines derived from hydrographic data. Sections touching the LiDAR vegetation 

polygons were labeled as vegetated, while gaps were flagged as discontinuities. This binary 

classification enables an evaluation of longitudinal ecological continuity, essential for identifying 

fragmentation points and planning restoration efforts. Notably, small gaps (<10 m) surrounded by 

vegetated segments were smoothed to reduce false positives caused by data noise. 

Figure 10: Result of the 
longitudinal continuity 
analysis, with a zoom on Boen 
sur Lignon. 
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8.4. Vegetation Density 

This result presents the estimation of tree density within the riparian zone near La Bathie d'Urfé 

along the Lignon River. Individual trees were extracted from the LiDAR. The delineated high 

vegetation area (in green) corresponds to LiDAR class 5, indicating significant canopy cover. 

Overlaid on this layer are three yellow field validation quadrats used to compare remote-sensed 

estimations with in-situ observations. The map demonstrates the feasibility of extracting tree-level 

data at fine scales and its relevance for estimating structural complexity. However, segmentation 

of individual trees proved challenging in dense forest patches, especially where canopy overlap is 

high—an expected limitation when applying crown detection methods developed primarily for 

boreal coniferous systems, underestimating the number of tree by a factor 4.3, constant on the 

three sampled places.  

Figure 11: Result of the 
density analysis by applying 
the tree top method, with the 
represented quadrats 
counted on site, 
representing three different 
typologies of forest. 
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8.5. Lateral Continuity 

Lateral continuity was assessed using nested buffers (10 m, 15 m, 30 m) along the stream 

network. This result shows how much of each buffer zone overlaps with high vegetation and valley 

bottom areas. The visual output illustrates areas where vegetation remains confined to narrow 

riparian strips or extends more broadly into floodplains. By summarizing this information per 500 

m stream reach, this approach allows integration into existing ecological indices, such as the IBC-

R and Ripascan, and facilitates spatial comparisons across the SAGE territory. 

Figure 12: Result of the lateral 
continuity analysis, here 
representing the percentage of 
coverage of buffers by forest, 
with a zoom on Boen sur Lignon. 
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8.6. Potential quality evaluation matrix 

This composite output synthesizes the results from buffer analyses by assigning qualitative 

classes (Very Good to Bad) to each buffer segment based on land use, vegetation coverage, and 

artificialization. Buffers closer to the watercourse were weighted more heavily, and scores were 

calculated to reflect degradation levels. The result identifies degraded zones requiring restoration 

and helps prioritize management actions. The method’s spatial granularity ensures that even 

narrow or urban-impacted reaches are captured in the diagnostic. As this results are hard to read, 

a line-derived matrix was created 

 

 

Figure 13: Result of 
experimental buffer matrix, with 
a zoom on Boen sur Lignon 
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Using a weighted average of buffer scores, each 500 m reach of the hydrographic network was 

assigned a final qualitative class. This reach-scale synthesis transforms complex multi-buffer data 

into a readable management tool. Mapped results allow for a spatial overview of riparian condition 

across the watershed, aiding in restoration planning and stakeholder communication. The 

Figure 14: Result of the 
experimental matrix, displayed 
this time as lines, with a 500m 
reaches size, with a zoom on 
Boen sur Lignon. 
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classification algorithm, implemented as an automated ArcGIS tool, ensures repeatability and 

adaptability as new data becomes available. 

All these results are available on a web map on the following link: 

https://univlyon2.maps.arcgis.com/apps/instant/basic/index.html?appid=cc367510753048e7b67

e087b588816be 

9. Discussion 

The integration of geomatics tools in the assessment of riparian vegetation within the SAGE 

Loire en Rhône-Alpes area has demonstrated the potential and the need of high-resolution remote 

sensing data to overcome the limitations of conventional datasets, even on very large datasets. 

Through a combination of LiDAR-derived vegetation mapping, DEM-based valley bottom 

delineation, continuity analysis, and composite scoring matrices, this study provides a spatially 

explicit, scalable framework for assessing riparian structure and ecological status. 

One of the most important results concerns the mismatch between national-scale vegetation 

datasets and actual riparian forest presence (Figure 5). It illustrates the underrepresentation of 

small, fragmented, or linear vegetation features in traditional vector maps. Such discrepancies 

align with prior critiques on data granularity in national land cover products (Breton et al., 2023; 

Macfarlane et al., 2017), which often fail to detect smaller patches and very narrow corridors (one 

to two trees in width). 

The valley bottom delineation provided ecogeomorphologically relevant zones of potential riparian 

presence. These methods, by incorporating parameters like valley slope, stream order, and flow 

accumulation thresholds, offer an improvement over fixed-distance buffer methods (Dufour et al., 

2019; Gilbert et al., 2016), permitting to estimate where riparian vegetation should be present or 

not. However, their efficacy still depends on the resolution and hydrological accuracy of the 

underlying DEM. The use of GRASS GIS’s r.carve function to correct anthropogenic interruptions 

in the DEM (e.g., bridges, culverts) and removing canals proved critical in ensuring hydrological 

coherence. 

In terms of vegetation continuity, both longitudinal and lateral analyses revealed marked spatial 

heterogeneity. The longitudinal continuity map (Figure 10) underscored ruptures in riparian 

coverage, especially in agricultural and peri-urban zones—findings consistent with previous 

literature noting landscape fragmentation as a driver of ecosystem service loss (Riis et al., 2020). 

Lateral continuity analyses (Figure 12) further emphasized how buffer-based coverage diminishes 

with increasing distance from the riverbank, particularly beyond the 15-meter zone. This drop-off, 

while expected, quantifies the spatial limits of riparian influence and provides insight for 

management targets such as those set by the Ripascan or IBC-R indices. 

The vegetation density results, derived from LiDAR point cloud classification, offered a structural 

proxy for riparian quality. While tools such as the lidR package in R enable tree segmentation and 

crown analysis, their efficacy in temperate, deciduous environments remains limited due to model 

calibration biases toward coniferous forests (Roussel et al., 2020). Attempts to use methods 

developed for evergreen forests proved to be complicated on deciduous forests. Many attempts 

were made in order to adjust the moving window, without completely covering the entirety of the 

trees presents. 

https://univlyon2.maps.arcgis.com/apps/instant/basic/index.html?appid=cc367510753048e7b67e087b588816be
https://univlyon2.maps.arcgis.com/apps/instant/basic/index.html?appid=cc367510753048e7b67e087b588816be
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The potential evaluation matrix methodology (Figures 13 and 14) demonstrated a functional 

approach to integrate multiple spatial indicators into a single index of riparian condition. By 

applying a weighted scoring system across three buffer zones per reach, and then translating 

these into reach-level classifications, this method provides a robust and scalable synthesis 

mechanism. The automation of this process through ArcGIS scripting ensures its replicability and 

adaptability to future datasets. However, it should be noted that while structural indicators such as 

vegetation presence and density are useful, the omission of functional ecological variables (e.g., 

shading capacity, biodiversity values, geomorphology features) may lead to over- or 

underestimation of ecological condition in certain contexts. 

10. Limits 

While this study presents a comprehensive framework for riparian vegetation mapping using high-

resolution LiDAR, GIS analyses, and multi-buffered spatial assessments, several limitations need 

to be acknowledged. These limitations affect the interpretation, generalization, and future 

reproducibility of the results. 

Despite the high spatial fidelity of LiDAR data, limitations in point density and classification 

accuracy can introduce uncertainties. In particular, areas under dense canopy or with 

heterogeneous land cover often present challenges for automated classification algorithms. While 

IGN’s LiDAR HD dataset provides pre-classified returns, misclassification of features such as 

electricity pylons, hedgerows, or tall crops as high vegetation was occasionally observed. This 

issue has been highlighted in previous studies, where even advanced classification tools like the 

lidR R package can misinterpret vertical features, particularly in mixed or urbanized landscapes 

(Roussel et al., 2020; Stackhouse et al., 2023). The problem of temporal resolution of this data is 

also to pose. IGN released the LiDAR HD data from 2022, but there is no information on when the 

next one will be available. 

The national vegetation datasets used for comparison (e.g., Zone de Végétation, OCS GE) are 

both either outdated and/or constrained by minimum mapping units (e.g., >5000 m²). These 

datasets fail to represent fine-scale, ecologically significant features, such as riparian hedgerows, 

scattered trees, or transitional forest zones. This limitation has already been widely recognized in 

the French context, where these databases often exclude riparian corridors less than 10 meters 

wide, despite their known ecological functions (Breton et al., 2023; Lochin et al., 2025). 

Valley bottom delineation methods, depend heavily on the quality and resolution of the input 

DEMs. In areas with significant anthropogenic alterations—such as urban environments, bridge 

crossings, and levees—DEM hydrological flow paths may be inaccurate. Although corrective 

procedures (e.g., GRASS GIS's r.carve) were implemented to enforce hydrological connectivity, 

residual flow artifacts may still influence valley delineation outputs. This introduces spatial 

uncertainty into the ecological extent assumed for riparian development (Gilbert et al., 2016; 

Dufour et al., 2019). 

The vegetation density proved to be inaccurate in some places and therefore does nor appear on 

the evaluation matrix. The algorithm was capable to detect within a 20% error (compared visually 

with orthophotos), on a narrow riparian hedge, all the trees. However, as soon as the forested 

area was growing in area, the algorithm was underestimating by a factor 4.3 the number of trees. 

Therefore, this result is recurrent in the three sampled places across the Lignon River with the 
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formula used, which is not the case for the other formulas. For this task, deep learning models, 

trained on deciduous vegetation were also implemented, but with too much erroneous results to 

be considered. 

The vegetation continuity metrics—both longitudinal and lateral—are reliant on the accuracy of 

vegetation masks derived from LiDAR. As such, any classification error in the base data will 

propagate through continuity analyses. Additionally, fixed buffer widths may not reflect ecologically 

meaningful distances for different stream sizes or riparian vegetation types, a limitation that has 

also been pointed out in international assessments (Macfarlane et al., 2018; Segura-Méndez et 

al., 2023). 

The evaluation matrix approach, while robust in its aggregation of multiple buffer-level indicators, 

uses a discrete scoring system that may oversimplify ecological variability. By reducing riparian 

complexity to five ordinal classes (very good to bad), the method potentially masks intermediate 

conditions or fails to distinguish between structurally similar but functionally different riparian zones 

(Pace et al., 2022). Moreover, the use of fixed weights in the buffer zones assumes uniform 

importance across the study area, which may not account for geomorphological or land-use 

variability. 

Lastly, the study’s analytical framework is predominantly structural. It prioritizes measurable 

spatial and physical indicators (e.g., canopy height, coverage, proximity) and does not directly 

integrate functional or biological indicators, such as species richness, biomass productivity, or 

water quality buffering capacity. The absence of these variables means that the assessments may 

not fully capture the ecosystem services provided by riparian zones, nor their resilience to climate 

change and human pressures (Riis et al., 2020; Pace et al., 2022). 

11. Perspectives 

Building on the insights gained through this study, several key perspectives emerge to guide future 

research and applied management efforts in riparian vegetation monitoring and restoration. These 

perspectives span methodological refinements, integrative data strategies, participatory 

processes, and long-term ecological monitoring under climate and anthropogenic pressures. 

One major area for advancement is the integration of functional ecological indicators alongside 

structural variables in riparian mapping workflows. While LiDAR and object-based classification 

provide robust data on vegetation height, canopy density, and spatial distribution, they fall short of 

capturing ecosystem functions such as nutrient retention, thermal buffering, or habitat suitability 

for specific taxa. Incorporating trait-based metrics (e.g., Ellenberg indicator values, Grime CSR 

strategies) could enhance ecological interpretation and support assessments of riparian condition 

beyond mere structure (Pace et al., 2022; Breton et al., 2023). The challenge remains to develop 

spatially explicit, standardized datasets of plant traits suitable for remote sensing integration, a 

research gap increasingly noted in functional ecology. 

Second, there is considerable value in enhancing the temporal depth and continuity of monitoring 

frameworks. Riparian vegetation is highly dynamic, exhibiting seasonal and interannual 

fluctuations in response to hydrological regimes, disturbances, and succession processes. Yet 

most remote sensing analyses, including those in this study, rely on static imagery or single 

acquisition LiDAR. Emerging technologies such as UAV-based repeated monitoring, Sentinel-2 

time series, or phenological modeling offer ways to track vegetation dynamics more responsively, 
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especially for restoration follow-up and climate resilience assessments (Lochin et al., 2024; 

Swetnam et al., 2018). 

Another key perspective involves scaling up from local analyses to regional and national 

harmonization of methods. Current discrepancies in classification systems, buffer thresholds, and 

continuity metrics limit comparability between regions and projects (Segura-Méndez et al., 2023). 

The development of a shared typology or decision framework for riparian vegetation, similar to 

what is being piloted in programs like IBC-R, could support consistent data production across 

French catchments and inform national biodiversity and water policies. This also calls for improved 

interoperability of national datasets such as BD TOPO, OCS GE, and BD Forêt, which should 

evolve to better capture narrow, fragmented, or mixed riparian formations. 

Participatory and transdisciplinary approaches also present a promising avenue for making 

riparian mapping more inclusive and action-oriented. While technically advanced outputs such as 

LiDAR-derived vegetation masks or buffer scoring matrices are valuable for researchers, they may 

not align with the decision-making needs of local managers or landowners. Co-production 

frameworks—where users co-define indicators, validate maps, and guide output visualization—

can improve uptake, trust, and adaptability in planning contexts (Reed et al., 2014; Breton et al., 

2023). Embedding geomatics outputs into tools such as online viewers, decision dashboards, or 

SAGE-specific planning portals could increase the practical relevance of your work. 

Finally, the looming impacts of climate change and land-use transformation require a forward-

looking integration of predictive modeling into riparian vegetation studies. Scenario-based 

approaches—combining spatial models of vegetation response with hydrological forecasts—can 

support anticipatory planning and restoration prioritization. Tools such as landscape connectivity 

models, species distribution modeling, or resilience-based planning frameworks are increasingly 

used in this context and could be adapted to the Loire region using your existing datasets (Riis et 

al., 2020; Godfroy et al., 2022). 

 

12. Conclusion 

This study developed and tested a spatially explicit methodology to characterize riparian 

vegetation at a large scale using geomatics tools, focusing on the SAGE Loire en Rhône-Alpes 

area. By combining LiDAR-based vegetation mapping, hydromorphological modeling, and spatial 

connectivity analyses, the project offers an integrative framework for identifying ecological patterns 

and anthropogenic pressures within riparian zones. The results demonstrate the effectiveness of 

combining valley bottom delineation with high-resolution vegetation data to detect and evaluate 

riparian integrity across diverse landscapes. Notably, the longitudinal and lateral connectivity 

assessments, along with the multi-buffer and reach-based evaluation matrices, enable nuanced 

classification of riparian condition across the study area. 

While some technical limitations remain—such as incomplete LiDAR coverage, challenges in tree 

segmentation, and temporal mismatches between datasets—the methodology sets a foundation 

for replicability and further refinement. This approach contributes not only to research but also to 

practice, offering tangible tools for local decision-makers, especially under the scope of the 

SAGE’s long-term water management objectives. Future work should prioritize field validation, 

functional trait integration, and temporal monitoring to strengthen ecological interpretations. 
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Ultimately, this internship supports the broader interdisciplinary cluster by operationalizing riparian 

assessment tools, aligning scientific inquiry with stakeholder needs, and fostering adaptive 

management under global change scenarios. 
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15. Appendix 

15.1. Appendix 1: DEM Detail 

 

  

Appendix 1: Difference between available RGE ALTI DEM and LiDAR-derived DEM 
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15.2. Appendix 2 : RGE Alti DEM Data Sources 

 

 

  

Appendix 2: REG ALTI DEM data sources over the study area, showing re-sampled 25m 
resolution BD ALTI, low resolution lidar data, and winter photogrammetry.. 
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15.3. Appendix 3: DEM of Difference between LiDAR and RGE Alti 

  

Appendix 3: DEM of Difference between the RGE ALTI and the LiDAR-derived DEM 
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15.4. Appendix 4: In situ validation for vegetation density 

 

  

Appendix 5: Geolocalised 
tree count on site in Saint 
Etienne, compared with 
the detected trees with the 
best formula. 

Appendix 4: 3D view of 
the place Jean-Jaures 
in Saint Etienne, used 
for calibration of the 
algorithm, with results 
with the best formula 
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15.5. Appendix 4: R script: DEM from LiDAR 

 1. # =============================== 
 2. # Create 5m DEM from LiDAR Tiles (Class 2 & 9) 
 3. # Class 2 and 9 are respectively Ground and Water (to have a more coherent water surface) 
 4. # =============================== 
 5.   
 6. # Clear workspace 
 7. rm(list = ls()) 
 8.   
 9. # Load required libraries 
10. library(lidR) 
11. library(raster) 
12. library(future) 
13. library(terra)  # Load terra explicitly for SpatRaster support 
14.   
15.   
16.   
17. # Enable multiprocessing 
18. plan(multisession, workers = parallel::detectCores()) 
19.   
20. # Paths 
21. las_folder <- "C://your_folder"         # Folder with LAS/LAZ tiles 
22. output_dtm_path <- "C://output_folder//merged_dtm_5m.tif"  # Output GeoTIFF path 
23.   
24. # Load LAS catalog 
25. ctg <- readLAScatalog(las_folder) 
26.   
27. # Catalog options 
28. opt_chunk_buffer(ctg) <- 0 
29. opt_independent_files(ctg) <- TRUE 
30. opt_progress(ctg) <- TRUE 
31.   
32. # Set output resolution (in meters) 
33. dtm_resolution <- 5 
34.   
35. # Create DTM using classes 2 (ground) and 9 (water) 
36. dtm <- rasterize_terrain( 
37.   ctg, 
38.   algorithm = tin(),                     # You can also try kriging(k = 10) or knnidw(k = 10) 
39.   res = dtm_resolution, 
40.   filter = "-keep_class 2 9" 
41. ) 
42.   
43. # Save as a single GeoTIFF 
44. writeRaster(dtm, output_dtm_path, filetype = "GTiff", overwrite = TRUE) 
45.   
46. cat("\n DTM generation complete.\nSaved to:", output_dtm_path, "\n") 
47.   

Appendix 6: R script for batch DEM creation from LiDAR data 
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15.6. Appendix 5: R script: Tree top extraction 

 

 1. # =============================== 
 2. # Tree Top detection from LiDAR tiles - Class 5 (High Vegetation Only) 
 3. # It will create one Shapefile per tile and one merged Shapefile at the end of the process 
 4. # =============================== 
 5.   
 6. # Clear environment 
 7. rm(list = ls(globalenv())) 
 8.   
 9. # Load Libraries 
10. library(lidR) 
11. library(sf) 
12. library(tools) 
13. library(future) 
14.   
15. # Parallel setup: All cores 
16. plan(multisession, workers = parallel::detectCores()) 
17.   
18. # Start timer 
19. start_time <- Sys.time() 
20.   
21. # Paths 
22. las_folder <- "C://your_folder"         # Folder with LAS/LAZ tiles 
23. output_folder <- "C://output_folder//x003_4"  # Output folder 
24. dir.create(output_folder, showWarnings = FALSE, recursive = TRUE) 
25.   
26. # Define the detection function 
27. f <- function(x) { x * 0.003 + 4 } 
28. fname <- "x003_4" 
29.   
30. # Load catalog 
31. las_catalog <- readLAScatalog(las_folder) 
32.   
33. # Catalog options 
34. opt_chunk_buffer(las_catalog) <- 0 
35. opt_independent_files(las_catalog) <- TRUE 
36. opt_progress(las_catalog) <- TRUE 
37.   
38. # Processing function for catalog_apply 
39. process_tile <- function(cluster) { 
40.   las <- readLAS(cluster, filter = "-keep_class 5 -set_withheld_flag 0") 
41.   if (is.null(las) || nrow(las) == 0) return(NULL) 
42.    
43.   tile_name <- file_path_sans_ext(basename(attr(cluster, "file"))) 
44.   cat("Processing tile:", tile_name, "\n") 
45.    
46.   # Tree detection 
47.   ttops <- locate_trees(las, lmf(f)) 
48.    
49.   if (!is.null(ttops) && nrow(ttops) > 0) { 
50.     out_file <- file.path(output_folder, paste0("tree_tops_", fname, "_", tile_name, ".shp")) 
51.      
52.     st_write(ttops, dsn = out_file, driver = "ESRI Shapefile", 
53.              layer_options = "SHPT=POINTZ", delete_layer = TRUE) 
54.   } 
55.    
56.   return(NULL) 
57. } 
58.   
59. # Apply to catalog 
60. catalog_apply(las_catalog, process_tile) 
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61.   
62. # --- Merge outputs 
63. cat("Merging shapefiles...\n") 
64. shapefiles <- list.files(output_folder, pattern = "\\.shp$", full.names = TRUE) 
65. shapes_list <- lapply(shapefiles, st_read, quiet = TRUE) 
66.   
67. merged_count <- 0 
68. if (length(shapes_list) > 0) { 
69.   merged_shapes <- do.call(rbind, shapes_list) 
70.   merged_file <- file.path(output_folder, paste0("merged_tree_tops_", fname, ".shp")) 
71.   st_write(merged_shapes, merged_file, driver = "ESRI Shapefile", 
72.            layer_options = "SHPT=POINTZ", delete_layer = TRUE) 
73.   merged_count <- nrow(merged_shapes) 
74. } 
75.   
76. # --- Timing 
77. end_time <- Sys.time() 
78. processing_time <- end_time - start_time 
79. hours <- as.integer(processing_time / 3600) 
80. minutes <- as.integer((processing_time * 3600) / 60) 
81. seconds <- round(processing_time * 60, 2) 
82.   
83. # --- Write summary 
84. output_txt <- file.path(output_folder, paste0("Process_Summary_", format(end_time, 
"%Y_%m_%d_%H_%M"), ".txt")) 
85. sink(output_txt) 
86.   
87. cat("Tree Top Detection Process Summary\n") 
88. cat("==================================\n") 
89. cat("Filtered only Class 5 (high vegetation) points\n\n") 
90. cat(sprintf("Total number of tiles processed: %d\n", length(las_catalog))) 
91. cat(sprintf("Total processing time: %02d:%02d:%05.2f (HH:MM:SS)\n\n", hours, minutes, seconds)) 
92. cat(sprintf("Function %s → Total Trees Detected: %d\n", fname, merged_count)) 
93.   
94. sink()  # Close text file 
95.   
96. cat("\n Processing complete. Outputs saved in:", output_folder, "\n") 
97.   

Appendix 7: R script fo the batch Tree Top detection using LiDAR 
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15.7. Appendix 6: Python scripts for the evaluation matrix 

 

 1. import arcpy 
 2.   
 3. def degradation_driver(forest, vb, built): 
 4.     if vb in ["Moderate", "Poor", "Bad"]: 
 5.         return "Non-riparian vegetation" 
 6.     if built in ["Poor", "Bad"]: 
 7.         return "Urban Area" 
 8.   
 9.     rank = {"Very Good": 5, "Good": 4, "Moderate": 3, "Poor": 2, "Bad": 1} 
10.     reverse_rank = {v: k for k, v in rank.items()} 
11.   
12.     scores = { 
13.         "Forest_Qual": rank.get(forest, 0), 
14.         "VB_Qual": rank.get(vb, 0), 
15.         "Built_Qual": rank.get(built, 0) 
16.     } 
17.   
18.     # Find the lowest ranking value (most degrading) and return its qualitative label 
19.     lowest_score = min(scores.values()) 
20.     return reverse_rank.get(lowest_score, "Unknown") 
21.   
22. def main(): 
23.     arcpy.env.overwriteOutput = True 
24.   
25.     input_fc = arcpy.GetParameterAsText(0)  # Input feature class 
26.     output_field = arcpy.GetParameterAsText(1)  # Output field name 
27.   
28.     # Check if output field exists, if not create it 
29.     field_names = [f.name for f in arcpy.ListFields(input_fc)] 
30.     if output_field not in field_names: 
31.         arcpy.AddMessage(f"Creating new field: {output_field}") 
32.         arcpy.AddField_management(input_fc, output_field, "TEXT", field_length=50) 
33.   
34.     with arcpy.da.UpdateCursor(input_fc, ["Forest_Qual", "VB_Qual", "Built_Qual", output_field]) 
as cursor: 
35.         for row in cursor: 
36.             forest, vb, built = row[0], row[1], row[2] 
37.             row[3] = degradation_driver(forest, vb, built) 
38.             cursor.updateRow(row) 
39.   
40.     arcpy.AddMessage("Degradation evaluation completed.") 
41.   
42. if __name__ == '__main__': 
43.     main() 
44.   

Appendix 8: Python script used to create the buffered evaluation matrix. 
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 1. import arcpy 
 2. from collections import defaultdict 
 3.   
 4. def classify_score(score): 
 5.     if score >= 4.5: 
 6.         return "Very Good" 
 7.     elif score >= 3.5: 
 8.         return "Good" 
 9.     elif score >= 2.5: 
10.         return "Moderate" 
11.     elif score >= 1.5: 
12.         return "Poor" 
13.     else: 
14.         return "Bad" 
15.   
16. def main(): 
17.     arcpy.env.overwriteOutput = True 
18.   
19.     buffer_fc = arcpy.GetParameterAsText(0)  # Input buffer polygons with 'ID', 'Matrix', 
'ID_BUFF' 
20.     reach_fc = arcpy.GetParameterAsText(1)   # Input line layer with 'ReachID' 
21.     output_field = arcpy.GetParameterAsText(2)  # Output field name for qualitative score 
22.   
23.     # Mapping from qualitative labels to scores 
24.     qual_to_score = { 
25.         "Very Good": 5, 
26.         "Good": 4, 
27.         "Moderate": 3, 
28.         "Poor": 2, 
29.         "Bad": 1 
30.         # Exclude "Urban Area" and "Non-riparian vegetation" 
31.     } 
32.     weight_map = {1: 3, 2: 2, 3: 1}  # Higher weight for more important buffers 
33.   
34.     # Aggregate scores from buffer features by ID 
35.     scores_by_id = defaultdict(lambda: {"total": 0, "weight": 0}) 
36.     with arcpy.da.SearchCursor(buffer_fc, ["ID", "Matrix", "ID_BUFF"]) as cursor: 
37.         for rid, matrix, buff in cursor: 
38.             if rid is None or matrix is None or buff is None: 
39.                 continue  # Skip incomplete records 
40.             if matrix in ["Urban Area", "Non-riparian vegetation"]: 
41.                 continue  # Exclude irrelevant classifications 
42.             try: 
43.                 rid_str = str(int(float(rid))) 
44.             except (ValueError, TypeError): 
45.                 continue  # Skip if ID can't be converted 
46.             if matrix in qual_to_score and buff in weight_map: 
47.                 score = qual_to_score[matrix] 
48.                 weight = weight_map[buff] 
49.                 scores_by_id[rid_str]["total"] += score * weight 
50.                 scores_by_id[rid_str]["weight"] += weight 
51.   
52.     # Add output field to reach_fc if it doesn't exist 
53.     field_names = [f.name for f in arcpy.ListFields(reach_fc)] 
54.     if output_field not in field_names: 
55.         arcpy.AddMessage(f"Creating new field: {output_field}") 
56.         arcpy.AddField_management(reach_fc, output_field, "TEXT", field_length=20) 
57.   
58.     # Update reach features with classified scores 
59.     with arcpy.da.UpdateCursor(reach_fc, ["ReachID", output_field]) as cursor: 
60.         for row in cursor: 
61.             rid = str(row[0]) 
62.             if rid in scores_by_id and scores_by_id[rid]["weight"] > 0: 
63.                 avg_score = scores_by_id[rid]["total"] / scores_by_id[rid]["weight"] 
64.                 row[1] = classify_score(avg_score) 
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65.                 cursor.updateRow(row) 
66.   
67.     arcpy.AddMessage("Weighted classification from buffer layer applied to line features.") 
68.   
69. if __name__ == '__main__': 
70.     main() 
71.   

Appendix 9: Python script used to merge the buffered result to a line result. 

 


	1. Abstract (EN)
	2. Résumé (FR)
	3. List of Acronyms
	4. Table of Figures
	5. Introduction
	5.1.   Riparian vegetation
	5.2. Geomatics in riparian vegetation monitoring
	5.3. Knowledge gaps
	5.4. Benefits of research action
	5.5. Context
	5.6. Data Availability
	5.7. Problem Statement
	5.7.1. Objectives
	5.7.2. Hypotheses
	6. Study Area
	7. Material and methods
	7.1. Valley bottom
	7.2. Vegetation delineation
	7.3. Longitudinal continuity
	7.4. Vegetation Density
	7.5. Lateral Continuity
	7.6. Evaluation Matrix
	8. Results
	8.1. Valley Bottom Delineation
	8.2. Vegetation Delineation
	8.3. Longitudinal Continuity
	8.4. Vegetation Density
	8.5. Lateral Continuity
	8.6. Potential quality evaluation matrix
	9. Discussion
	10. Limits
	11. Perspectives
	12. Conclusion
	13. Acknowledgments
	14. References
	15. Appendix
	15.1. Appendix 1: DEM Detail
	15.2. Appendix 2 : RGE Alti DEM Data Sources
	15.3. Appendix 3: DEM of Difference between LiDAR and RGE Alti
	15.4. Appendix 4: In situ validation for vegetation density
	15.5. Appendix 4: R script: DEM from LiDAR
	15.6. Appendix 5: R script: Tree top extraction
	15.7. Appendix 6: Python scripts for the evaluation matrix

